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Statistical mechanics of RNA folding: A lattice approach
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We propose a lattice model for the secondary structure of RNA based on a self-interacting two-tolerant trail.
Self-avoidance and pseudoknots are taken into account. We investigate a simple version of the model in which
the native state of RNA consists of just one hairpin. Using exact arguments and Monte Carlo simulations we
determine the phase diagram for this case. We show that the denaturation transition is first order and can either
occur directly or through an intermediate molten phase.
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I. INTRODUCTION

In recent years, the diversity of roles played by RNA
cellular processes has become increasingly clear@1#. RNA is
a heteropolymer which is built from four types of monome
~nucleotides! @2# and as for proteins, a major issue is t
prediction of the tertiary~folded! structure for a given se
quence of nucleotides@3#. In some respects, this question
easier to answer for RNA than for proteins. First, the fo
nucleotides are chemically more similar than the 20 am
acids that form proteins. Second, it has been argued@3# that
folding in RNA is hierarchical in the sense that the ener
scales involved in secondary structure elements are la
than those of tertiary structure. Therefore much attent
also in the physics literature@4–11#, has been devoted t
predicting the secondary structure of RNA.

In most of the existing models, self-avoidance has
been fully taken into account. If one also neglects cert
types of monomer-monomer interactions such as those
curring in pseudoknots and kissing hairpins@2#, it becomes
possible to calculate secondary structures with a recur
algorithm whose complexity only grows as the third pow
of the number of monomersL @5#. Despite its success, thi
approach has several drawbacks. First, the neglect of
avoidance leads to unphysical properties for the radius
gyration@7#, especially at low temperatures. Second, the
glect of part of the physically relevant interactions is oft
justifieda posteriorifrom the observation that~for example!
pseudoknots are not very common in real RNA. Howeve
would be more attractive to have a model which allows o
to predictthe rate of occurrence of these structural eleme
A first attempt along these lines, but neglecting se
avoidance, was made in Ref.@12#.

In this paper, we propose a lattice model for RNA whi
can take into account both self-avoidance and most of
physically relevant interactions. To get a first insight into t
properties of the model, we study here in detail a simplifi
version, which is a lattice variant of the model studied
Ref. @6#. By using rigorous and numerical techniques w
known from the study of other lattice models of polyme
@13#, we find that RNA can exist in three phases. In t
present work we study the properties of these phases an
the transitions between them. In a forthcoming publicati
1063-651X/2003/68~5!/051904~8!/$20.00 68 0519
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we will investigate questions such as the probability of fo
mation of pseudoknots.

This paper is organized as follows. In Sec. II we pres
our lattice model and show how one can include seve
aspects of real RNA in a natural way. We also introduce
simplified version of the model. In Sec. III we prese
a number of semiexact results from which the phase diag
for this case can be obtained. In Sec. IV we give the res
of an extensive Monte Carlo study of this phase diagr
in two dimensions. Finally, in Sec. V, we present o
conclusions.

II. AN INTERACTING TWO-TOLERANT TRAIL MODEL
OF RNA

RNA is a heteropolymer whose primary structure cons
of a sequence of ribonucleotide bases. Of these there are
types, which are denoted by the symbolsC, G, U, andA. The
particular sequence of these bases determines the th
dimensional structure. Here we are mainly interested in
secondary structure which depends on base-base interac
of which pairing and stacking are the most important.

We make a lattice model for RNA starting from a two
tolerant trail@14#. This is a lattice random walk that can vis
each edge of the lattice at most twice. The walk hasL steps,
each of which corresponds to a monomer of RNA. Doub
visited edges correspond to bonded base pairs. In molec
such as DNA and RNA, complementary base pairs b
through hydrogen bonds. Once two bases are bonded
further hydrogen bonds can be made with other bases a
is this restriction that is taken into account by the tw
tolerance of the walk. In Fig. 1 we show a typical tw
tolerant trail of 500 steps. When stepi and j are on the same
edge, we say that they arebonded. The two-tolerant trail
consists of sets of connected bonded steps~corresponding to
helices in real RNA! alternating with sets of singly visited
edges~corresponding to loops and bulges! @2#. With each
L-step two-tolerant trailT we associate a setST whose
elements are the bonded steps of the trail:ST
5$( i , j ): i , j are bonded%. In most of the existing theoretica
work on RNA the following restriction is put on the bonde
steps: when both (i , j ) and (i 8, j 8) are bonded, one only al
lows the combinationsi , j , i 8, j 8 and i , i 8, j 8, j . The
situation in which i , i 8, j , j 8 will be referred to as a
©2003 The American Physical Society04-1
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P. LEONI AND C. VANDERZANDE PHYSICAL REVIEW E68, 051904 ~2003!
pseudoknot, even though in the biological literature this cl
of structures is further divided into several types@2#. In our
model, pseudoknots are treated on the same footing as
other types of bonds.

Next, we associate to each doubly visited edge a pai
energy« i , j which depends on the nature of the basesi and j
present on the edge. Below we will propose a simple fo
for « i , j inspired by the work of Bundschuh and Hwa@6# and
investigate the phase diagram of the resulting model.

Before doing that we comment here on how other phy
cally relevant interactions can be introduced in a natural w
in our model. The most important of these is the stack
energy. This is an interaction between neigboring bon
base pairs and it can be modeled by associating an en
s i ,i 11,j 21,j with each element ofST . The value of this stack-
ing energy depends on the four nucleotides forming
stack. When the pair (i 11,j 21) is not bonded we pu
s i ,i 11,j 21,j50.

Because of the semiflexible nature of nucleid acids, i
also necessary to add a bending rigidity for which we assu
the form k(nW i2nW i 11)2 with k>0 @15#. HerenW i is the unit
vector in the direction of thei th step. The total energy asso
ciated with the two-tolerant trailT thus becomes

ET5k (
i 51

L21

~nW i2nW i 11!21 (
( i , j )PST

~« i , j1s i ,i 11,j 21,j !. ~1!

The thermodynamic properties of the RNA model c
then be determined from the partition sum

ZL5(T
exp~2bET!, ~2!

where the sum is over allL-step two-tolerant trails andb is
the inverse temperatureb51/kBT. Moreover, ifA is a par-
ticular set of bonded monomer pairs we can determine
probability pA,L that this set occurs by calculating the rati

pA,L5
ZA,L

ZL
, ~3!

whereZA,L is given by an expression similar to Eq.~2! with
the sum restricted to trailsT for which A,ST . In this way, it

FIG. 1. A two-tolerant trail of 500 steps. Doubly visited edg
are represented by double lines.
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is possible to calculate, for example, the probability tha
pseudoknot appears as a function of temperature.

Within this model we can calculate the thermodynam
properties of a RNA molecule with a given sequence
bases by taking from the literature the estimated values
the relevant pairing and stacking energies. Clearly, suc
calculation can only be performed numerically. Here, we f
low another route with the main purpose of gaining a mo
detailed insight into a simplified version of our model. Su
an approach can give useful information against which
results of a full numerical calculation can be understood.
the simplified model we neglect the stacking energies and
bending rigidity. Moreover, we modify the nucleotide depe
dence of the pairing energies. A common approach in
physics literature is to take it as random@8–11#. In this way,
the study of RNA can be linked to that of random syste
such as spin glasses. However, clear differences between
dom and real RNA have been pointed out@16#. The latter has
an evolutionarily evolved, correlated sequence of bas
which is such that most often the ground state second
structure is less degenerated than that of random RNA.
expression for the pairing energy which has this feature
which lends itself to detailed analysis was introduced in R
@6#. Following that work, we take

« i , j5«01 «̃d i 1 j ,L11 ~4!

~whered is the Kronecker-delta and from now on we takeL

even!. In the physical region of interest«0,0 and«̃,0. The
second term in Eq.~4! favors the formation of just one hair
pin. This structure thus corresponds to the native state of
model. With all these simplifications, Eq.~1! becomes

ET5«0I 1 «̃N, ~5!

whereI is the total number of bonded base pairs andN the
total number ofnative interactions~i.e., those pairsi , j for
which d i 1 j ,L1151). Finally, we introduceq5exp(2b«0)
and q̃5exp(2b«̃), so that the partition sum~2! becomes

ZL~q,q̃!5(T
qIq̃N. ~6!

In the rest of this paper we study the phase diagram of
model defined by Eq.~6!.

III. THE PHASE DIAGRAM

The two-tolerant trail was originally introduced as
simple model for the coil-globule transition of homopol
mers@17#. The authors of that work studied the two-tolera
trails with attractive self-interactions, which corresponds
our model for q̃51. A closer investigation@18# revealed
however that in the low-temperature phase, the unive
properties of the trail are not those of a collapsed globu
polymer, but coincide with those of branched polyme
~BP’s!. In the high-temperature phase it was found@18# that
the universality class of two-tolerant trails is that of the se
avoiding walk~SAW! @13#. These results were based on e
4-2
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STATISTICAL MECHANICS OF RNA FOLDING: A . . . PHYSICAL REVIEW E68, 051904 ~2003!
act enumerations in two dimensions and on a study of
model on fractal lattices. More recently, we investigated
noninteracting two-tolerant trail~i.e., q5q̃51) with a
Monte Carlo method that will be discussed in the followi
section. We also found clear evidence that, at least in
dimensions, the noninteracting trail has the critical proper
of the SAW. Let us therefore assume for the moment t
along the lineq̃51, our model has a phase transition at so
qc(1).1 between a SAW-phase and a branched polym
phase. A more quantitative investigation of this transiti
will be presented in the following section. We now sho
how this assumption, together with a number of oth
semiexact results, leads to a qualitative determination of
form of the phase diagram.

For this purpose, we introduce the free energyf (q,q̃)
which is defined as

f ~q,q̃!5 lim
L→`

1

L
ln ZL~q,q̃!. ~7!

Besides this free energy it is convenient to introduce
connective constantm2(q,q̃)5exp@f(q,q̃)#. The existence of
the limit in Eq. ~7! can only be proven rigorously forq<1
and q̃<1 @19#. The proof is based on concatenation arg
ments and is a straightforward extension of that for the S
@20#. On the basis of an exact enumeration we recently
termined the estimate@19#

m2~1,1!53.4866.003 ~8!

on the square lattice. Moreover, it can also be proved tha
the noninteracting case the connective constant for t
tolerant rings~i.e., two-tolerant trails whose last step ends
the starting point! equals that of all two-tolerant trails. Again
this result can be shown by extension of the proof of a si
lar result for self-avoiding walks@20#. For more details, we
refer to Ref.@19#. In the following, we will assume that Eq
~7! exists.

First, we investigate the behavior of the free energy
fixed q and as a function ofq̃. Consider therefore the limi
q̃50 where the only contribution to the free energyf (q,0)
comes from trails without native contacts. A special subse
these are the trails in which the firstL/2 steps and the las
L/2 steps are in different half spaces. It is known that
quite general types of walks, the free energy of walks limi
to a half space is the same as that of unrestricted walks@i.e.,
f (q,1) in our case# up to surface corrections@21#. These
however vanish in the limitL→`. Thus, the free energy o
the trails without native contacts is bounded from below
that of trails living in a half space, which equals that of tra
without spatial restrictions. Therefore,f (q,1)< f (q,0), ;q.
However, since the free energy is a nondecreasing func
of q̃ we must conclude that

f ~q,q̃!5 f ~q,1!5 ln m2~q,1! 0<q̃<1. ~9!

Second, it is possible to obtain a lower bound to the p
tition sum~6! by considering only the contribution from two
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tolerant trails with a maximum number of native contac
i.e., those for whichN5L/2. Each of these is a walk whos
first L/2 steps is a one-tolerant trail~i.e., a walk that can visit
each edge of the lattice at most once!, and which then re-
traces these same steps in reverse order during its lastL/2
steps. For this type of walkI 5L/2 and therefore

f ~q,q̃!> 1
2 @ ln m11 ln q1 ln q̃#. ~10!

Here m1 is the connective constant for noninteracting on
tolerant trails. For example, on the square lattice one
m152.720 5860.000 20@22#.

Together Eqs.~9! and~10! imply the existence of a phas
transition at someq̃c(q). Moreover, one trivially arrives a
the bounds

0< ln q̃c~q!<2 lnm2~q,1!2 ln q2 ln m1 . ~11!

It also follows that for eachq fixed, the free energy equal
the value given by Eq.~9! as long asq̃<q̃c(q).

Further information on the upper bound in Eq.~11! can be
obtained from the following reasoning. Forq̃51 and forq
→`, the partition sum is dominated by trails in which ea
edge is visited twice. Each such trail ofL steps has the ap
pearance of a weakly embedded bond lattice animal@13#
whoseL/2 bonds correspond with the doubly visited edges
we show for an example in Fig. 2. But in the same figure
show that the mapping is not one to one. If we suppose
the number of trails that are mapped onto the same lat
animal is not extensive inL we can conclude that forq@1

ln m2~q,1!' 1
2 @ ln mBP1 ln q#. ~12!

Here,mBP is the connective constant for weakly embedd
bond lattice animals. Its value on the square lattice is e
mated asmBP55.2160.006 @23#. Hence, we can make th
upper bound~11! more precise forq→`. We obtain

ln q̃c~q!< ln mBP2 ln m1 , q→`. ~13!

What is the physical nature of the phase transition wh
existence we have just proven? To answer this question,
sider the density of native contactsn(q,q̃):

FIG. 2. Two two-tolerant trails withI 5L/2 that can be mapped
onto the same bond lattice animal.
4-3
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P. LEONI AND C. VANDERZANDE PHYSICAL REVIEW E68, 051904 ~2003!
n~q,q̃!52 lim
L→`

^N&
L

52 lim
L→`

(T
NqIq̃N

LZ~q,q̃!
. ~14!

The factor 2 ensures thatn(q,q̃)51 when the two-toleran
trail consists of one hairpin. In terms of the free energy t
density equals

n~q,q̃!52
] f ~q,q̃!

]q̃
. ~15!

Thus, from our earlier results on free energy we find t
n(q,q̃)50 for q,q̃c(q) while this density becomes strictl
positive aboveq̃c(q). We therefore interpret the phase tra
sition at q̃c(q) as a denaturation transition, i.e., a transiti
into ~or out of! the native state. Also note that this transitio
exists for every value ofq.

As discussed in the beginning of this section, numeri
evidence shows that there is also a transition between a
avoiding walk regime and a BP one along the lineq̃51, at
some critical valueqc(1). Clearly, since the free energy doe
not depend onq̃ for q̃,q̃c(q), the SAW-BP transition has to
be also present for some range ofq̃ values, and moreove
neither the location of the transition point nor its critic
properties can depend onq̃.

We therefore arrive at the phase diagram shown in Fig
There are three phases. At lowq ~or u«0u) and q̃ ~or u«̃u),
RNA is denaturated and behaves as a coil in the univers
class of the self-avoiding walk. Forq.qc(1), and for q̃
sufficiently small, there is a collapse into a branched polym
or ‘‘molten’’ phase. Finally forq̃ sufficiently large, we are in
the native, hairpin phase. The location and the nature of
phase transitions drawn in Fig. 3 follow from the numeric
data presented in the following section. For the transit
into the native state we were also guided by the bounds
rived above.

FIG. 3. Schematic phase diagram of our model. The thick
line is a line of second-order transitions, whereas along the bro
line the transition is first order. The thin full lines indicate the thr
paths along which we investigated the model numerically.
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The arguments we have given are quite general and
therefore believe that this phase diagram is correct, indep
dent of dimension. While the denaturation transition is
ways present, it is possible that the SAW-BP transition d
appears above some critical dimension. As an example
this we mention that in the model of Ref.@6# where
pseudoknots and self-avoidance are neglected, and w
thus can be seen as a mean-field model, no evidence fo
coil phase is found, and only the transition between the
tive and the molten phase is present. It is interesting to
mark that in that work it was also found that in the molt
phase, RNA has the properties of~mean-field! branched
polymers, as is the case here.

IV. NUMERICAL RESULTS

In order to get a more quantitative insight into the pha

diagram, we have investigated our model in the (q,q̃) plane
with extensive Monte Carlo simulations. Further numeric
insight was obtained from an exact enumeration of o
model forL<18. In these numerical approaches, we work
on a square lattice. This is not a severe approximation w
one is only interested in secondary structures. Indeed, it
resents already a significant step forward in comparison w
the mean-field approaches used so far. Going to three dim
sions could change some of the critical exponents of
model, but here we are mostly interested in qualitative f
tures of the phase diagram.

For the simulations, we used the pivot algorithm@24#, a
well-known technique that generates a Markov chain in
set of all allowed walks of a certain type. The pivot alg
rithm was originally introduced for self-avoiding walks. I
Ref. @25# we investigate the extension of this method to no
interacting two-tolerant trails, discussing such aspects as
godicity of the algorithm, acceptance ratio, autocorrelat
times, and so on.

Here we have to take into account interactions and do
by adding a standard Metropolis step to the algorithm. Mo
over, we implement the program within a multiple Marko
chain~MMC! approach@26#. In this method several Markov
chains at different temperatures are run in parallel and
regular intervals an attempt is made to switch two trails
tween Markov chains at different temperatures. Such an
tempt is accepted with a probability that is a trivial extensi
of that of the Metropolis algorithm. The MMC approach h
the advantage that it allows better sampling at lower te
peratures, where a standard algorithm may easily get s
near a metastable state. Besides the pivot moves, we
found it useful to add some local moves to enhance the
formance of the algorithm. Typically, at each temperatu
we performed 109 Monte Carlo steps resulting in
(0.5–1.0)3106 independent configurations over which ave
ages are calculated.

With this approach, we investigated our model along th
lines. For these, we choseq51, q̃51, andq5q̃2. We now
discuss the results.
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n
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A. The line qÄ1

On the basis of the phase diagram obtained in the pre
ing section, we expect that along this line there is only
denaturation transition. Evidence for this transition can m
easily be found by looking at the density of native contac

In Fig. 4 we show our results forn(1,q̃) for two-tolerant
trails of differentL as obtained from the exact enumerati
data. We clearly recognize the behavior predicted in Sec.
dressed with finite size roundings. From the intersections
the curves for differentL values a first estimate for the loca
tion of the critical point can be made. Moreover, since
transition into the native state shares some properties
the adsorption transition of a polymer onto a surface,
expect that right at the critical point the density of conta
scales asn;Lwn21, wherewn is a crossover exponent. From
the exact enumeration data shown in Fig. 4, we estim
wn'0.88. However, a study of the same quantity with t
Monte Carlo approach shows that this estimate is s
strongly affected by finite size effects. For example,
value for wn tends to increase to a value close to 1. T
suggests that the actual value ofwn is 1, which would be the
case for a first-order transition. To verify this idea we ma
histograms for our data forn at differentq̃ values. These are
indeed consistent with a first-order transition. As an exam
we show in Fig. 5 such a histogram at the transition po
There is clear evidence for two peaks, one nearn50, the
other aroundn'0.65. In fact, it turns out that from thes

FIG. 4. The number of native contacts as a function ofq̃ along
the line q51 for different L values, as obtained from exact en
merations.

FIG. 5. Histogram for the density of native contacts at the
naturation transition forL5300 (q51). The vertical axis indicates
the fraction of simulated configurations with a given number
native contacts.
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histograms, a rather sharp estimate forq̃c can be obtained,
with the resultq̃c54.2060.02.

The fact that the denaturation transition is first order c
also be understood with hindsight from a comparison w
known results from DNA models. Indeed, in recent yea
there has been quite some interest in understanding the
ture of the denaturation transition for that biopolymer. A
most all existing evidence now shows that this transition
first order, both ind52 andd53 @27–29#. When within our
model we divide the two-tolerant trail into two halves, w
can see them as the two strands of a DNA molecule wh
starting point is halfway on the two-tolerant trail. The nati
interactions, which are the only ones appearing along the
q51, can thus be interpreted as interactions between
mologous bases on the two strands of the DNA. In this w
our model withq51 becomes in a sense the dual of a
cently studied lattice model of DNA@27,29#, and we can
therefore expect both models to have a similar critical beh
ior.

B. The line q̃Ä1

The phase transition between the coil and branched p
mer regime along the lineq̃51 is more difficult to analyze.
There is no obvious order parameter characterizing this t
sition, since the average number of bonded base pairs,^I &, is
extensive on both sides of the transition.

We therefore investigated two other quantities. First,
looked at the specific heat, which forq̃51 equals

CL~q!5
1

L F (T
I 2qI

(T
qI

2S (T
IqI

(T
qI D 2G . ~16!

While both the exact enumerations and the Monte Ca
simulations show that the specific heat has a peak that slo
grows withL, it is difficult to obtain reliable estimates for th
location of the critical point and for the crossover expone
from these data. Nevertheless, the small value of the spe
heat exponent shows that the crossover exponent assoc
with the SAW-branched polymer transition is much smal
than 1, evidence that this transition is second order.

Second, it is possible to get information on the SAW-B
transition from the ratioY(q,1) of the average squared en
to-end distance over the average squared radius of gyra
It is well known that this is a universal quantity so we expe
its behavior to be stepwise as a function ofq, at least forL
→`. In fact, since for largeq the two-tolerant trail visits
each edge twice~see Fig. 2!, the end-to-end distance ap
proaches zero and henceY(q,1) goes to zero for largeL. On
the other hand, we verified recently that for noninteract
two-tolerant trailsY(1,1)57.123560.001@25#, fully consis-
tent with the value for the SAW. Hence along the lineq̃
51, Y(q,1) should assume this value belowqc(1), andthen
drop to zero. In Fig. 6 we present our data forY(q,1), which
have the expected behavior, dressed with finite size rou

-

f
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ing. From these results we are able to obtain the most a
rate estimate forqc(1) which equals 2.9160.08.

In Fig. 7 we show data for the squared radius of gyrat
RG

2 (L) as a function ofL in the BP phase. From this we ca
obtain the geometric exponentn since

RG
2 ~L !;L2n. ~17!

From a fit of the exact enumeration and Monte Carlo data
the BP phase we findn'0.55. This is still far from the bes
known value for two-dimensional branched polymers wh
is n50.640 7560.000 15@30#. This difference is probably
due to strong corrections to scaling. Indeed, this also happ
for the noninteracting situation where very long trails can
simulated, up toL57500. From them we obtainn50.749
60.001, as should be expected for a walk in the SAW u
versality class. However, this exponent is only recovered
L.200. We expect that then exponent for branched poly
mers will show up if one studies longer trails at temperatu
sufficiently below the transition. But that regime is difficu
to probe with our Monte Carlo technique.

C. The line qÄq̃2

From the phase diagram shown in Fig. 3, from the av
able estimates forqc(1), andfrom Eq. ~13! we expect that
along this line two phase transitions will be encountered. T
first one is the SAW-BP transition, which can be analyz
most suitably from an investigation of the ratioY(q,q̃). The

FIG. 6. Plot of Y(q,1) ~see text! for different L values (L
560, dotted line;L570, thick dashed line;L580, full line; L
590, dash-dotted line; andL5100, thin dashed line!.

FIG. 7. Plot ofRG
2 (L) vs L in the BP phase atq53.49 andq̃
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BP-native transition, on the other hand, should show its
through a study of the density of native contacts.

In Fig. 8 we show our results forY(q,Aq). As was the
case before, the data for differentL values intersect, yielding
the estimateqc53.0060.06. This result is within the nu
merical accuracy the same as that forq̃51, as was predicted
in Sec. III.

From a study of the density of native contacts, we co
clude that the transition between the branched polymer
the native phase is also first order. Since in this case it
transition between two rather dense phases, it is more d
cult to obtain a reliable estimate forq̃c . We find q̃c52.10
60.15. Figure 9 shows a histogram for the number of nat
contacts at this point.

V. CONCLUSIONS

In this paper, we have introduced a lattice model, ba
on a two-tolerant trail that seems well suited to investig
the secondary structure of RNA. We have found that fo
simple version of the interaction energies, there are th
phases and we have investigated in detail the transitions
tween these phases with a Monte Carlo method.

We believe that the structure of the phase diagram that
found here is not particular for the choice of the interacti
energy~4! but would be similar also for other choices of« i , j
that break the homogeneity of the interaction energies.
deed, it is known that, at least in mean-field theory@10#, the
inclusion of a random part in the interaction energy gives r

FIG. 8. Plot ofY(q,Aq) for different L values (L550, dotted
line; L5100, dashed line; andL5200, dashed-dotted line!.

FIG. 9. Histogram for the number of native contacts at the B

native transition along the lineq5q̃2. The data are forL5200 and

q̃52.10. The vertical axis indicates the fraction of simulated co
figurations with a given number of native contacts.
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to the appearance at low temperature of a spin-glass
phase. This phase then plays the role of the native on
therefore seems quite possible that taking into account s
avoidance and for rather general choices of nonhomogen
interaction energies, one recovers the three phases fo
here.

Upon lowering the temperature at fixed values of the
teraction energies« i , j there are thus two possible scenario
Either one goes directly into the native regime, or one g
through an intermediate molten phase. We believe that
first-order transition line approaches the lineq̃51 whenq
→`, although we could not prove this and simulations
this regime are difficult with the pivot algorithm. If this be
lief is correct it seems that the molten phase, where a
scription in terms of homogeneous interactions is corre
can never be the stable one at very low temperatures.

The coil or SAW phase was not present in simpler, me
field models of RNA such as those studied in Refs.@6–8,10#.
Moreover, our model does not show the divergence of
radius of gyration with L which occurs in the low-
temperature phase of simpler models@7#. Within our model,
then exponent remains at its SAW value in the native pha
This is of course a peculiarity of the simple interaction whi
we choose and will probably not hold anymore when a m
realistic version for the bonding energies« i , j is chosen.
Moreover, if one wants to determine the true value of
exponentn it is necessary to introduce all relevant intera
tions, also those considered to be only relevant for terti
structure. But clearly the precise value of critical expone
is not a major concern from a biochemical point of view.

We believe that the main interest of our model lies
further applications that go beyond the work presented h
and that our results can be used as a starting point for stu
which are of more interest from the point of view of molec
lar biophysics. First, still within the context of the simplifie
model we are investigating the probability of occurrence
pseudoknots. It is intuitively obvious that in the hairp
phase the occurrence of pseudoknots will be severely
et

ys
,
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pressed. But one would be interested in obtaining a m
quantitative insight into this issue.

Another application for which we think that our mod
can be useful is an investigation of the elastic properties
RNA. These have been measured recently using microm
ipulation techniques@31#. The theoretical study of elasti
properties of biomolecules is usually performed with
simple continuum models such as the wormlike ch
~WLC! @32#. This is certainly a very good approach whe
effects of self-avoidance can be neglected. For noninter
ing models of polymers, it is known@33# that as soon as an
infinitesimal force is applied, the polymer becomes stretch
and in such a regime it can be expected that it can be
scribed by the WLC or in terms of directed polymers. Ho
ever, for homopolymers below theu point it has been estab
lished that they undergo a transition to a stretched phase
for forces greater then a critical forceFc.0 @34,35#. Then,
in the whole region where the forces are below this thre
old, effects of self-avoidance are of importance. We exp
that a similar scenario might hold within the low-temperatu
phases~BP and native! of RNA. That self-avoidance can b
of importance in stretching experiments on single stran
DNA ~which is much like RNA! and proteins was also re
cently pointed out in Ref.@36#.

Finally, the scenario which we have found here for t
denaturation transition could be quite general and also b
relevance for proteins. Also, in that case it is possible t
depending on the ratios of relevant interactions, the dena
ation transition takes place immediately, or through an in
mediate molten phase. Indeed, models of proteins show
this kind of behavior have been studied in the past~see, e.g.,
Refs.@37,38#!.
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