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Statistical mechanics of RNA folding: A lattice approach
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We propose a lattice model for the secondary structure of RNA based on a self-interacting two-tolerant trail.
Self-avoidance and pseudoknots are taken into account. We investigate a simple version of the model in which
the native state of RNA consists of just one hairpin. Using exact arguments and Monte Carlo simulations we
determine the phase diagram for this case. We show that the denaturation transition is first order and can either
occur directly or through an intermediate molten phase.
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I. INTRODUCTION we will investigate questions such as the probability of for-
mation of pseudoknots.

In recent years, the diversity of roles played by RNA in  This paper is organized as follows. In Sec. Il we present
cellular processes has become increasingly ¢leaiRNAis  our lattice model and show how one can include several
a heteropolymer which is built from four types of monomersaspects of real RNA in a natural way. We also introduce the
(nuc|e0tide$ [2] and as for proteinS, a major issue is theSImpllfled version of the model. In Sec. Il we present
prediction of the tertiary(folded structure for a given se- @ number of semiexact re_sults from which the phase diagram
quence of nucleotideiS]. In some respects, this question is for this case can be obtained. In Sec. IV we give the_results
easier to answer for RNA than for proteins. First, the four®f @n extensive Monte Carlo study of this phase diagram
nucleotides are chemically more similar than the 20 amind? WO dimensions. Finally, in Sec. V, we present our
acids that form proteins. Second, it has been ard@¢that conclusions.
folding in RNA is hierarchical in the sense that the energy
scales involved in secondary structure elements are largefl. AN INTERACTING TWO-TOLERANT TRAIL MODEL
than those of tertiary structure. Therefore much attention, OF RNA
also in the physics literaturg4—11], has been devoted to

predicting the secondary structure of RNA. RNA is a heteropolymer whose primary structure consists

L . of a sequence of ribonucleotide bases. Of these there are four
In most of the. existing models, self-avoidance has nc_)Eypes, which are denoted by the symbBls3, U, andA. The
been fully taken into account.. If one also neglects certai articular sequence of these bases determines the three-
types of monomer-monomer interactions such as those Ogjimensional structure. Here we are mainly interested in the
curring in pseudoknots and kissing hairp{iag, it becomes  gecondary structure which depends on base-base interactions,
possible to calculate secondary structures with a recursivgs which pairing and stacking are the most important.
algorithm whose complexity only grows as the third power e make a lattice model for RNA starting from a two-
of the number of monomers [5]. Despite its success, this tolerant trail[14]. This is a lattice random walk that can visit
approach has several drawbacks. First, the neglect of selgéach edge of the lattice at most twice. The walk hageps,
avoidance leads to unphysical properties for the radius ogach of which corresponds to a monomer of RNA. Doubly
gyration[7], especially at low temperatures. Second, the nevisited edges correspond to bonded base pairs. In molecules
glect of part of the physically relevant interactions is oftensuch as DNA and RNA, complementary base pairs bind
justified a posteriorifrom the observation thdfor example  through hydrogen bonds. Once two bases are bonded, no
pseudoknots are not very common in real RNA. However, ifurther hydrogen bonds can be made with other bases and it
would be more attractive to have a model which allows onds this restriction that is taken into account by the two-
to predictthe rate of occurrence of these structural elementgtolerance of the walk. In Fig. 1 we show a typical two-
A first attempt along these lines, but neglecting self-tolerant trail of 500 steps. When stepndj are on the same
avoidance, was made in R¢f.2]. edge, we say that they ateonded The two-tolerant trail

In this paper, we propose a lattice model for RNA which consists of sets of connected bonded stepsresponding to
can take into account both self-avoidance and most of théelices in real RNA alternating with sets of singly visited
physically relevant interactions. To get a first insight into theedges(corresponding to loops and bulgg]. With each
properties of the model, we study here in detail a simplifiedL-step two-tolerant trail7 we associate a seéb; whose
version, which is a lattice variant of the model studied inelements are the bonded steps of the tral;
Ref. [6]. By using rigorous and numerical techniques well ={(i,j):i,j are bondefl In most of the existing theoretical
known from the study of other lattice models of polymerswork on RNA the following restriction is put on the bonded
[13], we find that RNA can exist in three phases. In thesteps: when bothi(j) and (’,j’) are bonded, one only al-
present work we study the properties of these phases and tmfws the combinations<j<i’'<j' andi<i’'<j’'<j. The
the transitions between them. In a forthcoming publicationsituation in whichi<i’<j<j’ will be referred to as a
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is possible to calculate, for example, the probability that a
D;\j pseudoknot appears as a function of temperature.
Within this model we can calculate the thermodynamic
properties of a RNA molecule with a given sequence of
% bases by taking from the literature the estimated values of
- the relevant pairing and stacking energies. Clearly, such a
calculation can only be performed numerically. Here, we fol-
low another route with the main purpose of gaining a more
detailed insight into a simplified version of our model. Such
an approach can give useful information against which the
results of a full numerical calculation can be understood. In
the simplified model we neglect the stacking energies and the
bending rigidity. Moreover, we modify the nucleotide depen-
FIG. 1. A two-tolerant trail of 500 steps. Doubly visited edges d€nce of the pairing energies. A common approach in the
are represented by double lines. physics literature is to take it as rand¢8+11]. In this way,
the study of RNA can be linked to that of random systems
pseudoknot, even though in the biological literature this clas§uch as spin glasses. However, clear differences between ran-
of structures is further divided into several tydés. In our ~ dom and real RNA have been pointed pi6]. The latter has
model, pseudoknots are treated on the same footing as tf#@ evolutionarily evolved, correlated sequence of bases,
other types of bonds. which is such that most often the ground state secondary
Next, we associate to each doubly visited edge a pairingtructure is less degenerated than that of random RNA. An
energye; ; which depends on the nature of the basesad] expression f(_)r the pairing energy vv_hlch hz_as this featgre and
present on the edge. Below we will propose a Simp]e forrﬁNthh |end.S itself to detailed anaIySIS was introduced in Ref.
for &; ; inspired by the work of Bundschuh and Hi&] and ~ [6]- Following that work, we take
investigate the phase diagram of the resulting model. -
Before doing that we comment here on how other physi- € j=€0T€01jL+1 (4)
cally relevant interactions can be introduced in a natural way )
in our model. The most important of these is the stackingWhere? is the Kronecker-delta and from now on we tdke
energy. This is an interaction between neigboring bonde@ven. In the physical region of interesy<<0 ands <0. The
base pairs and it can be modeled by associating an energgcond term in Eq4) favors the formation of just one hair-
oii+1j-1; With each element o87. The value of this stack- pin. This structure thus corresponds to the native state of our
ing energy depends on the four nucleotides forming themodel. With all these simplifications, E¢l) becomes
stack. When the pairi¢-1,j—1) is not bonded we put _
Oiiv1j-1,=0. E=¢gql +¢N, (5)
Because of the semiflexible nature of nucleid acids, it is ) )
also necessary to add a bending rigidity for which we assum@herel is the total number of bonded base pairs ahthe
the form K(ﬁi_ﬁi+1)2 with k=0 [15]. Heren is the unit total number ofnative interactions(i.e., those pairs,j for

vector in the direction of thth step. The total energy asso- WMeN di+jL+1=1). Finally, we introduceq=exp(-/eo)

ciated with the two-tolerant traill' thus becomes andq=exp(—fe), so that the partition surf2) becomes
L-1 3 .
ET:KIZI (ﬁl—ﬁl+l)2+(|;57(8“]4_0-"%1']71’]) (1) ZL(q,q):ET aqq. (6)
The thermodynamic properties of the RNA model canln the rest of this paper we study the phase diagram of the
then be determined from the partition sum model defined by Eq().

Ill. THE PHASE DIAGRAM
zL=ET exp — BEp), 2

The two-tolerant trail was originally introduced as a
simple model for the coil-globule transition of homopoly-
the inverse temperatugg= 1/kgT. Moreover, if A is a par- mers[17]. The authors of that work studied the two-tolerant

ticular set of bonded monomer pairs we can determine thirails with attractive self-interactions, which corresponds to

probability p 4 | that this set occurs by calculating the ratio our model forg=1. A closer investigatior{18] revealed
however that in the low-temperature phase, the universal

ZaL properties of the trail are not those of a collapsed globular
pA’L_z_L’ 3 polymer, but coincide with those of branched polymers
(BP’s). In the high-temperature phase it was foya8] that
whereZ 4| is given by an expression similar to E@) with the universality class of two-tolerant trails is that of the self-
the sum restricted to trailfor which AC S;. In this way, it  avoiding walk(SAW) [13]. These results were based on ex-

where the sum is over all-step two-tolerant trails ang is
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act enumerations in two dimensions and on a study of the
model on fractal lattices. More recently, we investigated the

noninteracting two-tolerant traili.e., g=g=1) with a
Monte Carlo method that will be discussed in the following
section. We also found clear evidence that, at least in two
dimensions, the noninteracting trail has the critical properties
of the SAW. Let us therefore assume for the moment that

along the lineg=1, our model has a phase transition at some
0c(1)>1 between a SAW-phase and a branched polymer
phase. A more quantitative investigation of this transition

will be presented in the following section. We now show

how this assumption, together with a number of other,
semiexact results, leads to a qualitative determination of the
form of the phase diagram.

For this purpose, we introduce the free enelfq;q,a)
which is defined as

FIG. 2. Two two-tolerant trails with=L/2 that can be mapped
onto the same bond lattice animal.

1 tolerant trails with a maximum number of native contacts,
~InZ.(q,9). 7) i.e., those for whicilN=L/2. Each of these is a walk whose
L first L/2 steps is a one-tolerant trdile., a walk that can visit
each edge of the lattice at most ojjcand which then re-
Besides this free energy it is convenient to introduce theraces these same steps in reverse order during itd1ast
connective constant,(q,q)=exdf(q,q)]. The existence of steps. For this type of walk=L/2 and therefore
the limit in Eq. (7) can only be proven rigorously fay<1 _ _
andq=<1 [19]. The proof is based on concatenation argu- f(q,0)=z[Inus+Ing+Ing]. (10
ments and is a straightforward extension of that for the SAWH is th i tant f int i i
[20]. On the basis of an exact enumeration we recently de: €re uy 1S he connective constant for noninteracting one
termined the estimati 9] tolerant trails. For example, on the square lattice one has
u1=2.72058-0.000 20[22].
mo(1,1)=3.486+.003 (8) Together Eqs(9) and(10) imply the existence of a phase
transition at some.(q). Moreover, one trivially arrives at
on the square lattice. Moreover, it can also be proved that ithe bounds
the noninteracting case the connective constant for two-
tolerant rings(i.e., two-tolerant trails whose last step ends at 0<Ing(q)=<2Inuy(q,1)—Ing—Inpu;. (11
the starting pointequals that of all two-tolerant trails. Again, )
this result can be shown by extension of the proof of a simiJt also follows that for eacly fixed, the free energy equals
lar result for self-avoiding walkg20]. For more details, we the value given by Eq9) as long agi=<q.(q).
refer to Ref.[19]. In the following, we will assume that Eq. Further information on the upper bound in E#j1) can be
(7) exists. obtained from the following reasoning. Fqr=1 and forq
First, we investigate the behavior of the free energy at.c, the partition sum is dominated by trails in which each

fixed g and as a function of]. Consider therefore the limit edge is visited twice. Each such trail bfsteps has the ap-

9=0 where the only contribution to the free enertfyy,0) Pearance of a weakly embedded bond lattice anifal
comes from trails without native contacts. A special subset ofvhoseL/2 bonds correspond with the doubly visited edges as
these are the trails in which the firsf2 steps and the last We show for an example in Fig. 2. But in the same figure we
L/2 steps are in different half spaces. It is known that forshow that the mapping is not one to one. If we suppose that
quite general types of walks, the free energy of walks limitecthe number of trails that are mapped onto the same lattice
to a half space is the same as that of unrestricted v{aé{s animal is not extensive ih we can conclude that f(q>1
f(g,1) in our casg¢ up to surface correction21]. These 1

however vanish in the limit —o. Thus, the free energy of I p2(q, )=z [In pgpting]. (12)
the trails without native contacts is bounded from below byHere, 45 is the connective constant for weakly embedded
that of trails living in a half space, which equals that of trails hond lattice animals. Its value on the square lattice is esti-
without spatial restrictions. Thereforé(q,1)<f(9.,0), V4.  mated asugp=>5.21+0.006[23]. Hence, we can make the
Hol/vever, since the free energy is a nondecreasing functioppper bound11) more precise fog— . We obtain

of g we must conclude that

f(q,q) = lim

L—o

INge(q)<Inpgp—Inpu;, q—oo. (13

f(q,9)=f(gq,)=In 1) 0=qg<1. 9 , , y
(@a=fad) #a(A.D) q © What is the physical nature of the phase transition whose
Second, it is possible to obtain a lower bound to the par€xistence we have just proven? To answer this question, con-
tition sum(6) by considering only the contribution from two- sider the density of native contaat$q,q):
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g4 The arguments we have given are quite general and we

= therefore believe that this phase diagram is correct, indepen-

|9=a dent of dimension. While the denaturation transition is al-

| ways present, it is possible that the SAW-BP transition dis-

branched appears above some critical dimension. As an example of
polymer |\ this we mention that in the model of Ref6] where

\ native pseudoknots and self-avoidance are neglected, and which
\ thus can be seen as a mean-field model, no evidence for the
\ coil phase is found, and only the transition between the na-

N tive and the molten phase is present. It is interesting to re-

coil N a=1 mark that in that work it was also found that in the molten

- _ phase, RNA has the properties @Ghean-field branched
g polymers, as is the case here.

FIG. 3. Schematic phase diagram of our model. The thick full
line is a line of second-order transitions, whereas along the broken
line the transition is first order. The thin full lines indicate the three
paths along which we investigated the model numerically.

IV. NUMERICAL RESULTS

In order to get a more quantitative insight into the phase

diagram, we have investigated our model in taeq) plane
2 Ng'gN with extensive Monte Carlo simulations. Further numerical
T insight was obtained from an exact enumeration of our
model forL=<18. In these numerical approaches, we worked
on a square lattice. This is not a severe approximation when
one is only interested in secondary structures. Indeed, it rep-
resents already a significant step forward in comparison with
Sthe mean-field approaches used so far. Going to three dimen-
sions could change some of the critical exponents of the
~ model, but here we are mostly interested in qualitative fea-
n(q,a)zzaf(ﬂm _ (15  tures of the phase diagram. _ .
aq For the simulations, we used the pivot algorithg#], a
well-known technique that generates a Markov chain in the
Thus, from our earlier results on free energy we find thatset of all allowed walks of a certain type. The pivot algo-
n(q,q)=0 for q<q.(q) while this density becomes strictly fithm was originally introduced for self-avoiding walks. In
positive aboveﬁc(q). We therefore interpret the phase tran- Ref. [25_] we investigate the_ exte_nsion_of this method to non-
. ~ . e ... __interacting two-tolerant trails, discussing such aspects as er-
sition atq.(q) as a denaturation transition, i.e., a transition .. . : .
into (or out of) the native state. Also note that this transition godicity of the algorithm, acceptance ratio, autocorrelation

exists for every value of. times, and sa on. . . . .
As discussed in the beginning of this section, numerical Here we have to take into account interactions and do this

evidence shows that there is also a transition between a sef?—y adding_a standard Metropolis step t_o the algqrithm. More-
avoiding walk regime and a BP one along the lipe 1, at over, we implement the program within a multiple Markov
some critical value (1). Clearly, since the free energy does chain(MMC) approact{26]. In this method several Markov

q d oF for G<t he SAW-BP ition h chains at different temperatures are run in parallel and at
not depend om for q<q.(q), the ol transition has to regular intervals an attempt is made to switch two trails be-
be also present for some range @ivalues, and moreover tyeen Markov chains at different temperatures. Such an at-

neither the location of the transition point nor its critical tempt is accepted with a probability that is a trivial extension

~ (N :

n(gq,q)=2lim—=2lim ———. (14
Lo L 1o LZ(q,0)

The factor 2 ensures thai(q,q)=1 when the two-tolerant

trail consists of one hairpin. In terms of the free energy thi

density equals

properties can depend ap _ ~_ of that of the Metropolis algorithm. The MMC approach has
We therefore arrive at the phase diagram shown in Fig. 3the advantage that it allows better sampling at lower tem-
There are three phases. At layv(or |eo]) andq (or |g|), peratures, where a standard algorithm may easily get stuck

RNA is denaturated and behaves as a coil in the universalitjear a metastable state. Besides the pivot moves, we also
class of the self-avoiding walk. Fay>q.(1), and forq  found it useful to add some local moves to enhance the per-
sufficiently small, there is a collapse into a branched polymeformance of the algorithm. Typically, at each temperature
or “molten” phase. Finally forg sufficiently large, we are in We performed 19 Monte Carlo steps resulting in
the native, hairpin phase. The location and the nature of thé0-5—1.0)x 10° independent configurations over which aver-
phase transitions drawn in Fig. 3 follow from the numericalages are calculated.

data presented in the following section. For the transition With this approach, we investigated our model along three
into the native state we were also guided by the bounds ddines. For these, we chosg=1, =1, andgq=q°. We now
rived above. discuss the results.
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n(1,5)1“ histograms, a rather sharp estimate Tﬁgrcan be obtained,
with the resulfq,=4.20+0.02.

08 The fact that the denaturation transition is first order can
06 also be understood with hindsight from a comparison with
known results from DNA models. Indeed, in recent years
04 there has been quite some interest in understanding the na-
02 ture of the denaturation transition for that biopolymer. Al-

most all existing evidence now shows that this transition is
first order, both id=2 andd=3 [27-29. When within our
model we divide the two-tolerant trail into two halves, we
FIG. 4. The number of native contacts as a functiom aflong can see th.em. as the two strands of a DNA mplecule Whose
the lineq=1 for differentL values, as obtained from exact enu- _startlng_pomt IS _halfway on the two-tolerant Fra'l' The natlv_e
merations. interactions, which are the only ones appearing along the line
g=1, can thus be interpreted as interactions between ho-
) mologous bases on the two strands of the DNA. In this way,
A.The line =1 our model withq=1 becomes in a sense the dual of a re-
On the basis of the phase diagram obtained in the precedently studied lattice model of DNA27,29, and we can
ing section, we expect that along this line there is only thetherefore expect both models to have a similar critical behav-
denaturation transition. Evidence for this transition can mostor.
easily be found by looking at the density of native contacts.

In Fig. 4 we show our results fon(1,q) for two-tolerant B. The line q=1
trails of differentL as obtained from the exact enumeration  The phase transition between the coil and branched poly-

data. We clearly recognize the behavior predicted in Sec. Il o, regime along the Iinﬁzl is more difficult to analyze.

dressed with finite size roundings. From the intersections Ofhere is no obvious order parameter characterizing this tran-

the curves for different values a first estimate for the loca- sitjon, since the average number of bonded base gajrsis
tion of the critical point can be made. Moreover, since theaxtensive on both sides of the transition.

transition into the native state shares some properties with \we therefore investigated two other quantities. First, we

the adsorption transition of a polymer onto a surface, wg§,gked at the specific heat, which fae=1 equals
expect that right at the critical point the density of contacts ’

5 7 6 8 0 122
g

scales as~L*¢ "1 whereg, is a crossover exponent. From . | 2

the exact enumeration data shown in Fig. 4, we estimate 1 ET 1“q ET lq

¢,~0.88. However, a study of the same quantity with the Cu(q)=+— — . (16)
Monte Carlo approach shows that this estimate is still L 2 q 2 q

strongly affected by finite size effects. For example, the T 7

value for ¢,, tends to increase to a value close to 1. This

suggests that the actual valuegf is 1, which would be the . )

case for a first-order transition. To verify this idea we madeWhile both the exact enumerations and the Monte Carlo
histograms for our data far at differentq values. These are simulations show that the specific heat has a peak that slowly

indeed consistent with a first-order transition. As an examplelgrow.S W'”}]L’h't IS q!ff|(?u|t to Obtz":c rehr?ble estimates for the
we show i Fig S such a stgram a the ransion pait et f e Tl pot and for e rossover exoonert
There is clear evidence for two peaks, one nearO, the heat i .h that th ' i Pe ted
other aroundn~0.65. In fact, it turns out that from these eat exponent Shows that the Crossover exponent associate

with the SAW-branched polymer transition is much smaller
than 1, evidence that this transition is second order.

P(2N/L) » Second, it is possible to get information on the SAW-BP
0.04 transition from the ratior(qg,1) of the average squared end-
to-end distance over the average squared radius of gyration.

It is well known that this is a universal quantity so we expect

its behavior to be stepwise as a functiongpfat least forl
—oo, In fact, since for largey the two-tolerant trail visits
0.01 each edge twicdsee Fig. 2, the end-to-end distance ap-
proaches zero and hen¥¢q,1) goes to zero for large. On

the other hand, we verified recently that for noninteracting

1=
2NIL two-tolerant trailsY(1,1)=7.1235+0.001[25], fully consis-

FIG. 5. Histogram for the density of native contacts at the de-tent with the value for the SAW. Hence along the lige
naturation transition fot. =300 (q=1). The vertical axis indicates =1, Y(q,1) should assume this value belgy(1), andthen
the fraction of simulated configurations with a given number ofdrop to zero. In Fig. 6 we present our data ¥{q,1), which
native contacts. have the expected behavior, dressed with finite size round-

0.03

0.02

0.2 0.4 0.6 0.8
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¥(q.1)*

L=50

15 2 25 3 q

FIG. 6. Plot of Y(q,1) (see text for different L values (
=60, dotted line;,L=70, thick dashed lineL=80, full line; L
=90, dash-dotted line; and= 100, thin dashed line

FIG. 8. Plot ofY(q,/q) for differentL values (=50, dotted
line; L=100, dashed line; and=200, dashed-dotted line

ing. From these results we are able to obtain the most acciBP-native transition, on the other hand, should show itself
rate estimate fog.(1) which equals 2.910.08. through a study of the density of native contacts.

In Fig. 7 we show data for the squared radius of gyration In Fig. 8 we show our results for(q,q). As was the
RZ(L) as a function oL in the BP phase. From this we can case before, the data for differentalues intersect, yielding
obtain the geometric exponentsince the estimateq,=3.00+0.06. This result is within the nu-

merical accuracy the same as thatder 1, as was predicted

R&(L)~L2?". (17)  in Sec. IIl.
From a study of the density of native contacts, we con-
From a fit of the exact enumeration and Monte Carlo data irflude that the transition between the branched polymer and
the BP phase we find~0.55. This is still far from the best the native phase is also first order. Since in this case it is a
known value for two-dimensional branched polymers whichtransition between two rather dense phases, it is more diffi-
is »=0.64075-0.000 15[30]. This difference is probably cult to obtain a reliable estimate foy,. We find g.=2.10
due to strong corrections to scaling. Indeed, this also happens0.15. Figure 9 shows a histogram for the number of native
for the noninteracting situation where very long trails can becontacts at this point.
simulated, up taL=7500. From them we obtain=0.749
+0.001, as should be expected for a walk in the SAW uni- V. CONCLUSIONS
versality class. However, this exponent is only recovered for ) . i
L>200. We expect that the exponent for branched poly- In this paper, we have introduced a lattice model, based
mers will show up if one studies longer trails at temperature®" @ two-tolerant trail that seems well suited to investigate
sufficiently below the transition. But that regime is difficult the secondary structure of RNA. We have found that for a
to probe with our Monte Carlo technique. simple version of the_ mtergcnon energies, there are three
phases and we have investigated in detail the transitions be-
_ - tween these phases with a Monte Carlo method.
C. The line q=g? We believe that the structure of the phase diagram that we
From the phase diagram shown in Fig. 3, from the availfound here is not particular for the choice of the interaction
able estimates fog.(1), andfrom Eq.(13) we expect that energy(4) but would be similar also for other choices&f;
along this line two phase transitions will be encountered. Théhat break the homogeneity of the interaction energies. In-
first one is the SAW-BP transition, which can be analyzeddeed, it is known that, at least in mean-field thefi9], the
most suitably from an investigation of the ragq,q). The inclusion of a random part in the interaction energy gives rise

2 P(2N/L)
Ro(L) 4 0.03]
10

0.024

0.01

—»
02 0.4 06 0.8 1.0 2N/L

FIG. 9. Histogram for the number of native contacts at the BP-
native transition along the ling=g>2. The data are fot. =200 and

FIG. 7. Plot ofRé(L) vs L in the BP phase aj=3.49 andq 9=2.10. The vertical axis indicates the fraction of simulated con-
=1. figurations with a given number of native contacts.

70 00
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to the appearance at low temperature of a spin-glass-likpressed. But one would be interested in obtaining a more
phase. This phase then plays the role of the native one. Huantitative insight into this issue.
therefore seems quite possible that taking into account self- Another application for which we think that our model
avoidance and for rather general choices of nonhomogeneogan be useful is an investigation of the elastic properties of
interaction energies, one recovers the three phases fourRNA. These have been measured recently using microman-
here. ipulation techniqueg31]. The theoretical study of elastic
Upon lowering the temperature at fixed values of the in-properties of biomolecules is usually performed within
teraction energies; ; there are thus two possible scenarios.simple continuum models such as the wormlike chain
Either one goes directly into the native regime, or one goe$WLC) [32]. This is certainly a very good approach when
through an intermediate molten phase. We believe that theffects of self-avoidance can be neglected. For noninteract-
first-order transition line approaches the lige=1 whenq  ing models of polymers, it is knowf83] that as soon as an
—, although we could not prove this and simulations ininfinitesimal force is applied, the polymer becomes stretched
this regime are difficult with the pivot algorithm. If this be- @nd in such a regime it can be expected that it can be de-
lief is correct it seems that the molten phase, where a described by the WLC or in terms of directed polymers. How-
scription in terms of homogeneous interactions is correct€Ver, for homopolymers below thepoint it has been estab-

can never be the stable one at very low temperatures_ lished that they undergo a transition to a stretched phase Only
The coil or SAW phase was not present in simpler, meanfor forces greater then a critical for¢e.>0 [34,35. Then,
field models of RNA such as those studied in Rgfis-8,19.  in the whole region where the forces are below this thresh-

Moreover, our model does not show the divergence of th@!d, effects of self-avoidance are of importance. We expect
radius of gyration withL which occurs in the low- that a similar scenario might hold within the low-temperature
temperature phase of simpler modgf$. Within our model, ~PhasesBP and native of RNA. That self-avoidance can be
the » exponent remains at its SAW value in the native phase®f importance in stretching experiments on single stranded
This is of course a peculiarity of the simple interaction whichDNA (which is much like RNA and proteins was also re-
we choose and will probably not hold anymore when a moréently pointed out in Ref.36].
realistic version for the bonding energies; is chosen. Finally, the scenario which we have found here for the
Moreover, if one wants to determine the true value of thed€naturation transition could be quite general and also be of
exponentw it is necessary to introduce all relevant interac-rélevance for proteins. Also, in that case it is possible that
tions, also those considered to be only relevant for tertianfl€Pending on the ratios of relevant interactions, the denatur-
structure. But clearly the precise value of critical exponentgtion transition takes place immediately, or through an inter-
is not a major concern from a biochemical point of view. mediate molten phase. Indeed, models of proteins showing
We believe that the main interest of our model lies inthis kind of behavior have been studied in the dase, e.g.,
further applications that go beyond the work presented herBefs.[37,38).
and that our results can be used as a starting point for studies
which are of more interest from the point of view of molecu-
lar biophysics. First, still within the context of the simplified
model we are investigating the probability of occurrence of We would like to thank R. Kawai for the use of his com-
pseudoknots. It is intuitively obvious that in the hairpin puter cluster. P.L. thanks the FWO-Vlaanderen for financial
phase the occurrence of pseudoknots will be severely susupport.
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